3D printing

3D printing, or additive manufacturing, is the construction of a three-dimensional object from a CAD model or a digital 3D model. The term "3D printing" can refer to a variety of processes in which material is deposited, joined or solidified under computer control to create a three-dimensional object,[ with material being added together (such as liquid molecules or powder grains being fused together), typically layer by layer.

In the 1980s, 3D printing techniques were considered suitable only for the production of functional or aesthetic prototypes, and a more appropriate term for it at the time was rapid prototyping. As of 2019, the precision, repeatability, and material range of 3D printing has increased to the point that some 3D printing processes are considered viable as an industrial-production technology, whereby the term additive manufacturing can be used synonymously with 3D printing. One of the key advantages of 3D printing is the ability to produce very complex shapes or geometries that would be otherwise impossible to construct by hand, including hollow parts or parts with internal truss structures to reduce weight. Fused deposition modeling, or FDM, is the most common 3D printing process in use as of 2020.[4]

Terminology

The umbrella term additive manufacturing (AM) gained popularity in the 2000s, inspired by the theme of material being added together. In contrast, the term subtractive manufacturing appeared as a retronym for the large family of machining processes with material removal as their common process. The term 3D printing still referred only to the polymer technologies in most minds, and the term AM was more likely to be used in metalworking and end use part production contexts than among polymer, inkjet, or stereo lithography enthusiasts. Inkjet was the least familiar technology even though it was invented in 1950 and poorly understood because of it complex nature. The earliest inkjets were used as recorders and not printers. As late as the 1970s the term recorder was associated with inkjet. Continuous Inkjet later evolved to On-Demand or Drop-On-Demand Inkjet. Inkjets were single nozzle at the start and now have thousands of nozzles for printing in each pass over a surface.

By early 2010s, the terms 3D printing and additive manufacturing evolved senses in which they were alternate umbrella terms for additive technologies, one being used in popular language by consumer-maker communities and the media, and the other used more formally by industrial end-use part producers, machine manufacturers, and global technical standards organizations. Until recently, the term 3D printing has been associated with machines low in price or in capability. 3D printing and additive manufacturing reflect that the technologies share the theme of material addition or joining throughout a 3D work envelope under automated control. Peter Zelinski, the editor-in-chief of Additive Manufacturing magazine, pointed out in 2017 that the terms are still often synonymous in casual usage but some manufacturing industry experts are trying to make a distinction whereby Additive Manufacturing comprises 3D printing plus other technologies or other aspects of a manufacturing process.[7]

Other terms that have been used as synonyms or hypernyms have included desktop manufacturingrapid manufacturing (as the logical production-level successor to rapid prototyping), and on-demand manufacturing (which echoes on-demand printing in the 2D sense of printing). Such application of the adjectives rapid and on-demand to the noun manufacturing was novel in the 2000s reveals the prevailing mental model of the long industrial era in which almost all production manufacturing involved long lead times for laborious tooling development. Today, the term subtractive has not replaced the term machining, instead complementing it when a term that covers any removal method is needed. Agile tooling is the use of modular means to design tooling that is produced by additive manufacturing or 3D printing methods to enable quick prototyping and responses to tooling and fixture needs. Agile tooling uses a cost-effective and high-quality method to quickly respond to customer and market needs, and it can be used in hydro-forming, stamping, injection molding and other manufacturing processes.

History

1950

The general concept of and procedure to be used in 3D-printing was first described by Raymond F. Jones in his story, "Tools of the Trade," published in the November 1950 issue of Astounding Science Fiction magazine. He referred to it as a "molecular spray" in that story.

1970s

In 1971, Johannes F Gottwald patented the Liquid Metal Recorder, US3596285A, a continuous Inkjet metal material device to form a removable metal fabrication on a reusable surface for immediate use or salvaged for printing again by remelting. This appears to be the first patent describing 3D printing with rapid prototyping and controlled on-demand manufacturing of patterns.

The patent states " As used herein the term printing" is not intended in a limited sense but includes writing or other symbol, character or pattern formation with an ink. The term ink as used in is intended to include not only dye or pigment-containing materials, but any flowable substance or composition suited for application to surface for forming symbols, characters, or patterns of intelligence by marking". The preferred ink is of a Hot melt" type. The range of commercially available ink compositions which could meet the requirements of the invention are not known at the present time. However, satisfactory printing according to the invention has been achieved with the conductive metal alloy as ink."

"But in terms of material requirements for such large and continuous displays, if consumed at theretofore known rates, but increased in proportion to increase in size, the high cost would severely limit any widespread enjoyment of a process or apparatus satisfying the foregoing objects."

"It is therefore an additional object of the invention to minimize use to materials in a process of the indicated class."

"It is a further object of the invention that materials employed in such process be salvaged for reuse."

"According to another aspect of the invention, a combination for writing and the like comprises a carrier for displaying an intelligence pattern and an arrangement for removing the pattern from the carrier."

In 1974, David E. H. Jones laid out the concept of 3D printing in his regular column Ariadne in the journal New Scientist.

1980s

Early additive manufacturing equipment and materials were developed in the 1980s.[10]

In April 1980, Hideo Kodama of Nagoya Municipal Industrial Research Institute invented two additive methods for fabricating three-dimensional plastic models with photo-hardening thermoset polymer, where the UV exposure area is controlled by a mask pattern or a scanning fiber transmitter. [11] He filed a patent for this XYZ plotter, which was published on November 10, 1981. His research results as journal papers were published in April and November in 1981. However, there was no reaction to the series of his publications. His device was not highly evaluated in the laboratory and his boss did not show any interest. His research budget was just 60,000 yen or $545 a year. Acquiring the patent rights for the XYZ plotter was abandoned, and the project was terminated.

On July 2, 1984, American entrepreneur Bill Masters filed a patent for his Computer Automated Manufacturing Process and System. This filing is on record at the USPTO as the first 3D printing patent in history; it was the first of three patents belonging to Masters that laid the foundation for the 3D printing systems used today.

On 16 July 1984, Alain Le Méhauté, Olivier de Witte, and Jean Claude André filed their patent for the stereolithography process. The application of the French inventors was abandoned by the French General Electric Company (now Alcatel-Alsthom) and CILAS (The Laser Consortium). The claimed reason was "for lack of business perspective".

In early 1984, Robert Howard started R.H. Research, later named Howtek, Inc to develop a color 2D printer using Thermoplastic (hot-melt) plastic ink. A team was put together, some from Exxon Office Systems, Danbury Systems Division, an inkjet printer startup and some members of Howtek, Inc group became popular figures in 3D Printing Industry. Richard Helinski patent US5136515A, Method and Means for constructing three-dimensional articles by particle deposition, application 11/07/1989 granted 8/04/1992 formed a New Hampshire company C.A.D-Cast, Inc, name later changed to Visual Impact Corporation (VIC) on 8/22/1991. A prototype of the VIC 3D printer for this company is available with video presentation showing a 3D model printed with single nozzle inkjet. Another employee Herbert Menhennett formed a New Hampshire company HM Research in 1991 and introduced the Howtek, Inc, inkjet technology and thermoplastic materials to Royden Sanders of SDI and Bill Masters of Ballistic Particle Manufacturing (BPM) where he worked for a number of years. Both BPM 3D printers and SPI 3D printers use Howtek, Inc style Inkjets and Howtek, Inc style materials. Royden Sanders licensed the Helinksi patent prior to manufacturing the Modelmaker 6 Pro at Sanders prototype, Inc (SPI) in 1993. James K. McMahon was hired by Howtek, Inc to help develop the inkjet, he later worked at Sanders Prototype and now operates Layer Grown Model Technology, a 3D service provider specializing in Howtek single nozzle inkjet and printer support. James K. McMahon worked with Steven Zoltan at Exxon and has a patent in 1978 that expanded the understanding of the single nozzle design inkjets and help perfect the Howtek, Inc inkjets.

Three weeks later in 1984, Chuck Hull of 3D Systems Corporation[21] filed his own patent for a stereolithography fabrication system, in which layers are added by curing photopolymers with ultraviolet light lasers. Hull defined the process as a "system for generating three-dimensional objects by creating a cross-sectional pattern of the object to be formed,". Hull's contribution was the STL (Stereolithography) file format and the digital slicing and infill strategies common to many processes today.

In 1986, Charles "Chuck" Hull was granted a patent for his system, and his company, 3D Systems Corporation released the first commercial 3D printer, the SLA-1.

The technology used by most 3D printers to date—especially hobbyist and consumer-oriented models—is fused deposition modeling, a special application of plastic extrusion, developed in 1988 by S. Scott Crump and commercialized by his company Stratasys, which marketed its first FDM machine in 1992.

1990s

AM processes for metal sintering or melting (such as selective laser sinteringdirect metal laser sintering, and selective laser melting) usually went by their own individual names in the 1980s and 1990s. At the time, all metalworking was done by processes that are now called non-additive (casting, fabrication, stamping, and machining); although plenty of automation was applied to those technologies (such as by robot welding and CNC), the idea of a tool or head moving through a 3D work envelope transforming a mass of raw material into a desired shape with a toolpath was associated in metalworking only with processes that removed metal (rather than adding it), such as CNC milling, CNC EDM, and many others. But the automated techniques that added metal, which would later be called additive manufacturing, were beginning to challenge that assumption. By the mid-1990s, new techniques for material deposition were developed at Stanford and Carnegie Mellon University, including microcasting[and sprayed materials. Sacrificial and support materials had also become more common, enabling new object geometries.

The term 3D printing originally referred to a powder bed process employing standard and custom inkjet print heads, developed at MIT by Emanuel Sachs in 1993 and commercialized by Soligen Technologies, Extrude Hone Corporation, and Z Corporation.

The year 1993 also saw the start of an inkjet 3D printer company initially named Sanders Prototype,Inc and later named Solidscape, introducing a high-precision polymer jet fabrication system with soluble support structures, (categorized as a "dot-on-dot" technique).

In 1995 the Fraunhofer Society developed the selective laser melting process.

2000s

Fused Deposition Modeling (FDM) printing process patents expired in 2009.

2010s

As the various additive processes matured, it became clear that soon metal removal would no longer be the only metalworking process done through a tool or head moving through a 3D work envelope, transforming a mass of raw material into a desired shape layer by layer. The 2010s were the first decade in which metal end use parts such as engine brackets and large nuts would be grown (either before or instead of machining) in job production rather than obligately being machined from bar stock or plate. It is still the case that casting, fabrication, stamping, and machining are more prevalent than additive manufacturing in metalworking, but AM is now beginning to make significant inroads, and with the advantages of design for additive manufacturing, it is clear to engineers that much more is to come.

As technology matured, several authors had begun to speculate that 3D printing could aid in sustainable development in the developing world.

In 2012, Filabot developed a system for closing the loop with plastic and allows for any FDM or FFF 3D printer to be able to print with a wider range of plastics.

In 2014, Benjamin S. Cook and Manos M. Tentzeris demonstrate the first multi-material, vertically integrated printed electronics additive manufacturing platform (VIPRE) which enabled 3D printing of functional electronics operating up to 40 GHz.

The term "3D printing" originally referred to a process that deposits a binder material onto a powder bed with inkjet printer heads layer by layer. More recently, the popular vernacular has started using the term to encompass a wider variety of additive-manufacturing techniques such as electron-beam additive manufacturing and selective laser melting. The United States and global technical standards use the official term additive manufacturing for this broader sense.

The most-commonly used 3D printing process (46% as of 2018) is a material extrusion technique called fused deposition modeling, or FDM. While FDM technology was invented after the other two most popular technologies, stereolithography (SLA) and selective laser sintering (SLS), FDM is typically the most inexpensive of the three by a large margin, which lends to the popularity of the process.